当前位置: 首页 > 资讯 > 科技 > Meta发布Llama 3.2 1B/3B量化模型:降低功耗,适配更多轻量级移动设备
  • 0
  • 0
  • 分享

Meta发布Llama 3.2 1B/3B量化模型:降低功耗,适配更多轻量级移动设备

Meta 2024-10-28 10:02:25 爱吃爆米花

近日消息,在今年9月开源了Llama 3.2的1B和3B模型之后,Meta在10月24日推出了这两个模型的量化版本。通过量化处理,新版本的模型大小平均减少了56%,RAM占用量平均下降了41%。此外,模型运行速度提升了2到4倍,功耗也有所降低,这使得这些模型能够更广泛地应用于各类移动设备中。

注:模型量化(Model Quantization)就是通过各种训练方式将浮点模型转为定点模型,可以压缩模型参数,降低模型的复杂性,以便于在更轻量的平台运行。

Meta 表示,他们采用了量化感知训练(Quantization-Aware Training,QAT)和后训练量化(SpinQuant)两种方法对模型进行量化,其中“量化感知训练”更重视模型的准确性,而“后训练量化”更强调模型的可移植性。

据介绍,研究人员一共为 Llama 3.2 的 1B 和 3B 模型各推出了两款量化版本,分别为 Llama 3.2 1B QLoRA、Llama 3.2 1B SpinQuant、Llama 3.2 3B QLoRA 和 Llama 3.2 3B SpinQuant。

Meta 声称,这些量化模型比非量化的 Llama BF16 模型速度更快,占用更少的 RAM,并且功耗更低,同时保持与 Llama BF16 版本几乎相同的精度。

尽管量化后的 Llama 3.2 1B 和 3B 模型仅支持 8000 个 Token 的上下文(原版模型支持 12.8 万个 Token),但 Meta 的测试发现,无论是 Llama QLoRA 还是 Llama SpinQuant 等量化版本的基准测试结果实际上与原来的 Llama BF16 版本相差不远。

目前,Meta 已在一加 12、三星 S24+/S22 及苹果 iOS 设备(未公布具体型号)等移动平台测试这些经过量化后模型,测试“运行结果良好”,研究人员未来还计划通过神经处理单元(NPU)提升这些量化模型的性能。

来源:it之家
免责声明:本内容来自互联网,不代表本网站的观点和立场,如有侵犯你的权益请来信告知;如果你觉得好,欢迎分享给你的朋友,本文网址 https://wangzhidaquan.com/zixun/97616.html
文章标签
评论

文明上网,理性发言,共同做网络文明传播者

验证码
提交
热门游戏
换一换
热门软件
换一换