近日消息,Meta AI团队在优化人工智能技术的边界上迈出了重要一步,成功研发了MobileLLM——一种专为移动设备及低功耗环境量身定制的精简语言模型。该研究成果于本月早些时候,即2024年6月27日公之于众,它颠覆了业界关于高效AI模型必须具备庞大参数量的传统认知。
该研究团队由 Meta Reality Labs、PyTorch 和 Meta AI Research (FAIR) 的成员组成,专注于优化参数少于10亿的模型。这只是 GPT-4等模型的一小部分,据估计,GPT-4等模型的参数超过一万亿。
这些设计选择使得 MobileLLM 在常见基准测试任务上的表现比之前类似规模的模型高出2.7% 到4.3%。虽然这些个位数的改进似乎很小,但它们代表了竞争激烈的语言模型开发领域取得的重大进步。
值得注意的是,在某些 API 调用任务上,MobileLLM 的3.5亿参数版本表现出与更大的70亿参数 LLaMA-2模型相当的准确率。这表明,对于某些特定应用,更紧凑的模型可能会提供类似的功能,同时使用更少的计算资源。
MobileLLM 的开发与人们对更高效的 AI 模型日益增长的兴趣相吻合。随着超大型语言模型的进展出现放缓迹象,研究人员越来越多地探索更紧凑、更专业的设计的潜力。尽管名称中带有“LLM”,但对效率和设备部署的关注使 MobileLLM 与一些研究人员所说的小型语言模型 (SLM)属于同一类别。
虽然 MobileLLM 尚未向公众开放,但 Meta 已将预训练代码开源,允许其他研究人员在其工作的基础上继续研究。随着这项技术的发展,它可能会为个人设备带来更先进的 AI 功能,尽管时间表和具体功能仍不确定。
文明上网,理性发言,共同做网络文明传播者